Currently supported Matrix Calculator

Matrix Addition

Matrix Subtraction

Matrix Multiplication

Matrix Square

Matrix Rank Algebra using

Matrix Inverse

Matrix Calculation

Matrix Ad joint

Matrix Determinant

Sum of Determinants

Product of Determinants

Developed by

Ariful Haque Shisir

[email protected]

If u find any wrong calculation or mathematical error please contact immediately at [email protected]

In mathematics, a matrix (plural matrices) is a rectangular array[1] of numbers, symbols, or expressions, arranged in rows and columns.[2][3] The individual items in a matrix are called its elements or entries. An example of a matrix with 2 rows and 3 columns is

\begin{bmatrix}1 & 9 & -13 \\20 & 5 & -6 \end{bmatrix}.

Matrices of the same size can be added or subtracted element by element. But the rule for matrix multiplication is that two matrices can be multiplied only when the number of columns in the first equals the number of rows in the second. A major application of matrices is to represent linear transformations, that is, generalizations of linear functions such as f(x) = 4x. For example, the rotation of vectors in three dimensional space is a linear transformation. If R is a rotation matrix and v is a column vector (a matrix with only one column) describing the position of a point in space, the product Rv is a column vector describing the position of that point after a rotation. The product of two matrices is a matrix that represents the composition of two linear transformations. Another application of matrices is in the solution of a system of linear equations. If the matrix is square, it is possible to deduce some of its properties by computing its determinant. For example, a square matrix has an inverse if and only if its determinant is not zero. Eigenvalues and eigenvectors provide insight into the geometry of linear transformations.

Applications of matrices are found in most scientific fields. In every branch of physics, including classical mechanics, optics, electromagnetism, quantum mechanics, and quantum electrodynamics, they are used to study physical phenomena, such as the motion of rigid bodies. In computer graphics, they are used to project a 3-dimensional image onto a 2-dimensional screen. In probability theory and statistics, stochastic matrices are used to describe sets of probabilities; for instance, they are used within the PageRank algorithm that ranks the pages in a Google search.[4] Matrix calculus generalizes classical analytical notions such as derivatives and exponentials to higher dimensions.

Matrix Addition

Matrix Subtraction

Matrix Multiplication

Matrix Square

Matrix Rank Algebra using

Matrix Inverse

Matrix Calculation

Matrix Ad joint

Matrix Determinant

Sum of Determinants

Product of Determinants

Developed by

Ariful Haque Shisir

[email protected]

If u find any wrong calculation or mathematical error please contact immediately at [email protected]

In mathematics, a matrix (plural matrices) is a rectangular array[1] of numbers, symbols, or expressions, arranged in rows and columns.[2][3] The individual items in a matrix are called its elements or entries. An example of a matrix with 2 rows and 3 columns is

\begin{bmatrix}1 & 9 & -13 \\20 & 5 & -6 \end{bmatrix}.

Matrices of the same size can be added or subtracted element by element. But the rule for matrix multiplication is that two matrices can be multiplied only when the number of columns in the first equals the number of rows in the second. A major application of matrices is to represent linear transformations, that is, generalizations of linear functions such as f(x) = 4x. For example, the rotation of vectors in three dimensional space is a linear transformation. If R is a rotation matrix and v is a column vector (a matrix with only one column) describing the position of a point in space, the product Rv is a column vector describing the position of that point after a rotation. The product of two matrices is a matrix that represents the composition of two linear transformations. Another application of matrices is in the solution of a system of linear equations. If the matrix is square, it is possible to deduce some of its properties by computing its determinant. For example, a square matrix has an inverse if and only if its determinant is not zero. Eigenvalues and eigenvectors provide insight into the geometry of linear transformations.

Applications of matrices are found in most scientific fields. In every branch of physics, including classical mechanics, optics, electromagnetism, quantum mechanics, and quantum electrodynamics, they are used to study physical phenomena, such as the motion of rigid bodies. In computer graphics, they are used to project a 3-dimensional image onto a 2-dimensional screen. In probability theory and statistics, stochastic matrices are used to describe sets of probabilities; for instance, they are used within the PageRank algorithm that ranks the pages in a Google search.[4] Matrix calculus generalizes classical analytical notions such as derivatives and exponentials to higher dimensions.

Screenshots

About Advance Matrix Calculator

Currently supported Matrix Calculator

Matrix Addition

Matrix Subtraction

Matrix Multiplication

Matrix Square

Matrix Rank Algebra using

Matrix Inverse

Matrix Calculation

Matrix Ad joint

Matrix Determinant

Sum of Determinants

Product of Determinants

Developed by

Ariful Haque Shisir

[email protected]

If u find any wrong calculation or mathematical error please contact immediately at [email protected]

In mathematics, a matrix (plural matrices) is a rectangular array[1] of numbers, symbols, or expressions, arranged in rows and columns.[2][3] The individual items in a matrix are called its elements or entries. An example of a matrix with 2 rows and 3 columns is

\begin{bmatrix}1 & 9 & -13 \\20 & 5 & -6 \end{bmatrix}.

Matrices of the same size can be added or subtracted element by element. But the rule for matrix multiplication is that two matrices can be multiplied only when the number of columns in the first equals the number of rows in the second. A major application of matrices is to represent linear transformations, that is, generalizations of linear functions such as f(x) = 4x. For example, the rotation of vectors in three dimensional space is a linear transformation. If R is a rotation matrix and v is a column vector (a matrix with only one column) describing the position of a point in space, the product Rv is a column vector describing the position of that point after a rotation. The product of two matrices is a matrix that represents the composition of two linear transformations. Another application of matrices is in the solution of a system of linear equations. If the matrix is square, it is possible to deduce some of its properties by computing its determinant. For example, a square matrix has an inverse if and only if its determinant is not zero. Eigenvalues and eigenvectors provide insight into the geometry of linear transformations.

Applications of matrices are found in most scientific fields. In every branch of physics, including classical mechanics, optics, electromagnetism, quantum mechanics, and quantum electrodynamics, they are used to study physical phenomena, such as the motion of rigid bodies. In computer graphics, they are used to project a 3-dimensional image onto a 2-dimensional screen. In probability theory and statistics, stochastic matrices are used to describe sets of probabilities; for instance, they are used within the PageRank algorithm that ranks the pages in a Google search.[4] Matrix calculus generalizes classical analytical notions such as derivatives and exponentials to higher dimensions.

Matrix Addition

Matrix Subtraction

Matrix Multiplication

Matrix Square

Matrix Rank Algebra using

Matrix Inverse

Matrix Calculation

Matrix Ad joint

Matrix Determinant

Sum of Determinants

Product of Determinants

Developed by

Ariful Haque Shisir

[email protected]

If u find any wrong calculation or mathematical error please contact immediately at [email protected]

In mathematics, a matrix (plural matrices) is a rectangular array[1] of numbers, symbols, or expressions, arranged in rows and columns.[2][3] The individual items in a matrix are called its elements or entries. An example of a matrix with 2 rows and 3 columns is

\begin{bmatrix}1 & 9 & -13 \\20 & 5 & -6 \end{bmatrix}.

Matrices of the same size can be added or subtracted element by element. But the rule for matrix multiplication is that two matrices can be multiplied only when the number of columns in the first equals the number of rows in the second. A major application of matrices is to represent linear transformations, that is, generalizations of linear functions such as f(x) = 4x. For example, the rotation of vectors in three dimensional space is a linear transformation. If R is a rotation matrix and v is a column vector (a matrix with only one column) describing the position of a point in space, the product Rv is a column vector describing the position of that point after a rotation. The product of two matrices is a matrix that represents the composition of two linear transformations. Another application of matrices is in the solution of a system of linear equations. If the matrix is square, it is possible to deduce some of its properties by computing its determinant. For example, a square matrix has an inverse if and only if its determinant is not zero. Eigenvalues and eigenvectors provide insight into the geometry of linear transformations.

Applications of matrices are found in most scientific fields. In every branch of physics, including classical mechanics, optics, electromagnetism, quantum mechanics, and quantum electrodynamics, they are used to study physical phenomena, such as the motion of rigid bodies. In computer graphics, they are used to project a 3-dimensional image onto a 2-dimensional screen. In probability theory and statistics, stochastic matrices are used to describe sets of probabilities; for instance, they are used within the PageRank algorithm that ranks the pages in a Google search.[4] Matrix calculus generalizes classical analytical notions such as derivatives and exponentials to higher dimensions.

User reviews of
Advance Matrix Calculator

Write the first review for this app!
Android Market Comments

Great work for accounts and taxes Just a little more bug fixes with cpu settings

Excellent app Very helpful app. Easy to use. Get the result instantly. Thanks

thik hai thik hai

Sep 10, 2014