Periodic Table Quiz

Periodic Table Quiz


The periodic table is a table of the chemical elements in which the elements are arranged by order of atomic number in such a way that the periodic properties (chemical periodicity) of the elements are made clear. The standard form of the table includes periods (usually horizontal in the periodic table) and groups (usually vertical). Elements in groups have some similar properties to each other. There is no one single or best structure for the periodic table but by whatever consensus there is, the form used here is very useful. The periodic table is a masterpiece of organised chemical information. The evolution of chemistry's periodic table into the current form is an astonishing achievement with major contributions from many famous chemists and other eminent scientists.

A periodic table is a tabular display of the chemical elements, organized on the basis of their atomic numbers, electron configurations, and recurring chemical properties. Elements are presented in order of increasing atomic number (number of protons). The standard form of table comprises an 18 × 7 grid or main body of elements, positioned above a smaller double row of elements. The table can also be deconstructed into four rectangular blocks: the s-block to the left, the p-block to the right, the d-block in the middle, and the f-block below that. The rows of the table are called periods; the columns of the s-, d-, and p-blocks are called groups, with some of these having names such as the halogens or the noble gases. Since, by definition, a periodic table incorporates recurring trends, any such table can be used to derive relationships between the properties of the elements and predict the properties of new, yet to be discovered or synthesized, elements. As a result, a periodic table—whether in the standard form or some other variant—provides a useful framework for analyzing chemical behavior, and such tables are widely used in chemistry and other sciences.

Although precursors exist, Dmitri Mendeleev is generally credited with the publication, in 1869, of the first widely recognized periodic table. He developed his table to illustrate periodic trends in the properties of the then-known elements. Mendeleev also predicted some properties of then-unknown elements that would be expected to fill gaps in this table. Most of his predictions were proved correct when the elements in question were subsequently discovered. Mendeleev's periodic table has since been expanded and refined with the discovery or synthesis of further new elements and the development of new theoretical models to explain chemical behavior.

All elements from atomic numbers 1 (hydrogen) to 118 (ununoctium) have been discovered or synthesized. Of these, all up to and including californium exist naturally; the rest have only been synthesized in laboratories. Production of elements beyond ununoctium is being pursued, with the question of how the periodic table may need to be modified to accommodate any such additions being a matter of ongoing debate. Numerous synthetic radionuclides of naturally occurring elements have also been produced in laboratories.
Add to list
Free
51
2.6
User ratings
5
Installs
1,000+
Concerns
0
File size
3014 kb
Screenshots
Screenshot of Periodic Table Quiz Screenshot of Periodic Table Quiz Screenshot of Periodic Table Quiz Screenshot of Periodic Table Quiz Screenshot of Periodic Table Quiz

About Periodic Table Quiz
The periodic table is a table of the chemical elements in which the elements are arranged by order of atomic number in such a way that the periodic properties (chemical periodicity) of the elements are made clear. The standard form of the table includes periods (usually horizontal in the periodic table) and groups (usually vertical). Elements in groups have some similar properties to each other. There is no one single or best structure for the periodic table but by whatever consensus there is, the form used here is very useful. The periodic table is a masterpiece of organised chemical information. The evolution of chemistry's periodic table into the current form is an astonishing achievement with major contributions from many famous chemists and other eminent scientists.

A periodic table is a tabular display of the chemical elements, organized on the basis of their atomic numbers, electron configurations, and recurring chemical properties. Elements are presented in order of increasing atomic number (number of protons). The standard form of table comprises an 18 × 7 grid or main body of elements, positioned above a smaller double row of elements. The table can also be deconstructed into four rectangular blocks: the s-block to the left, the p-block to the right, the d-block in the middle, and the f-block below that. The rows of the table are called periods; the columns of the s-, d-, and p-blocks are called groups, with some of these having names such as the halogens or the noble gases. Since, by definition, a periodic table incorporates recurring trends, any such table can be used to derive relationships between the properties of the elements and predict the properties of new, yet to be discovered or synthesized, elements. As a result, a periodic table—whether in the standard form or some other variant—provides a useful framework for analyzing chemical behavior, and such tables are widely used in chemistry and other sciences.

Although precursors exist, Dmitri Mendeleev is generally credited with the publication, in 1869, of the first widely recognized periodic table. He developed his table to illustrate periodic trends in the properties of the then-known elements. Mendeleev also predicted some properties of then-unknown elements that would be expected to fill gaps in this table. Most of his predictions were proved correct when the elements in question were subsequently discovered. Mendeleev's periodic table has since been expanded and refined with the discovery or synthesis of further new elements and the development of new theoretical models to explain chemical behavior.

All elements from atomic numbers 1 (hydrogen) to 118 (ununoctium) have been discovered or synthesized. Of these, all up to and including californium exist naturally; the rest have only been synthesized in laboratories. Production of elements beyond ununoctium is being pursued, with the question of how the periodic table may need to be modified to accommodate any such additions being a matter of ongoing debate. Numerous synthetic radionuclides of naturally occurring elements have also been produced in laboratories.

Visit Website
User reviews of Periodic Table Quiz
Write the first review for this app!
Android Market Comments
A Google User
Mar 6, 2013
Awful Cannot see the answers as the advertising is in the way!
A Google User
Mar 6, 2013
Awful Cannot see the answers as the advertising is in the way!